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Abstract A generalization of the usual procedure for constructing potential systems for systems of partial
differential equations with multidimensional spaces of conservation laws is considered. More precisely, for the
construction of potential systems with a multi-dimensional space of local conservation laws, instead of using only
basis conservation laws, their arbitrary linear combinations are used that are inequivalent with respect to the equiv-
alence group of the class of systems or symmetry group of the fixed system. It appears that the basis conservation
laws can be equivalent with respect to groups of symmetry or equivalence transformations, or vice versa; in this
sense the number of independent linear combinations of conservation laws can be grater than the dimension of
the space of conservation laws. The first possibility leads to an unnecessary, often cumbersome, investigation of
equivalent systems, the second one makes possible that a great number of inequivalent potential systems are missed.
Examples of all these possibilities are given.

Keywords Conservation law · Equivalence transformation · Potential symmetry

1 Introduction

When one investigates a physical process, knowledge of symmetry properties of the modelling system of PDEs can
be very useful for understanding the behavior of solutions of the model. Thus, e.g., a group-invariance property of
a system of differential equations allows to generate new solutions from the known ones, to construct conservation
laws and to find wide classes of exact invariant solutions. This becomes especially important in the investigation
of nonlinear models, where every single partial solution plays an important role. Even if it does not solve any real
boundary-value problem, it can be used, e.g., as a testing solution for different numeric or approximate algorithms.
Moreover, for many nonlinear systems, invariant solutions are the only known solutions. This is just one reason why
any new symmetry is of great importance for systems of PDEs. In this short note we illustrate a way of constructing
a larger number of potential systems that can lead to finding new potential symmetries.
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The concept of potential symmetry was introduced by Bluman et al. [1, Chapter 7], [2] in the late 80s; see also
the related notion of quasi-local symmetry [3,4]. Namely, if at least one of equations of a system of PDEs can be
written in conserved form, then using it one can introduce potential variable(s). Attaching equations containing the
new potential variable(s) to the system, one obtains a new (potential) system, nonlocally related to the initial one.
Any symmetry of the potential system induces symmetry of the initial system. (Generally speaking, the inverse
statement is a bit different: symmetries of the initial system induce symmetries of potential systems or equivalence
transformations in the set of potential systems corresponding to the initial system [5].) If the symmetry transfor-
mations of the local variables depend explicitly on the potential variable(s), the obtained symmetry projects to a
nonlocal one for the initial system and is called potential symmetry.

The above procedure of finding potential symmetries has been generalized in [5] by admitting dependence of
symmetries on potentials associated to several conservation laws simultaneously. Below we will use the attribute
“simplest” to emphasize that the potential system is constructed using a single conservation law only. Here we use a
slightly generalized procedure of constructing potential systems for systems of PDEs admitting multi-dimensional
spaces of conservation laws.

Previously, for the construction of potential symmetries only basis conservation laws were used. However, this
does not guarantee that the obtained potential systems (and therefore, the obtained potential symmetries) will be
inequivalent with respect to a local symmetry group of the initial system or local equivalence group of the class
of the system. This may lead to an unnecessarily complicated investigation of equivalent systems with, in fact,
no new result. Or vice versa, there exists a linear combination of basis conservation laws that leads to a potential
system inequivalent to “basis” ones. In such a case, when considering only potential systems constructed with basis
conservation laws one can “miss” some of the potential symmetries.

2 Basic notions on conservation laws and potential symmetry

For simplicity we consider here the case of the simplest potential systems for systems of (1 + 1)-dimensional
equations only. Note that all statements and notions below can be easily generalized to the n-dimensional case and
to general potential systems constructed using several conservation laws simultaneously.

Let L be a system L(t, x, u(ρ)) = 0 of l PDEs L1 = 0, …, Ll = 0 for the unknown functions u = (u1, . . . , um)

of the independent variables t and x . Here u(ρ) denotes the set of all partial derivatives of the functions u of order
not greater than ρ, including u as the derivatives of zeroth order.

A conservation law of the system L can be understood as a divergence expression

Dt T (t, x, u(r)) + Dx X (t, x, u(r)) = 0 (1)

which vanishes for all solutions of L. Here Dt and Dx are the operators of total differentiation with respect to
t and x , respectively. The differential functions T and X are correspondingly called a density and a flux of the
conservation law and the tuple (T, X) is a conserved vector of the conservation law.

The crucial notion of the theory of conservation laws is one of equivalence and triviality of conservation laws.
Two conserved vectors (T, X) and (T ′, X ′) are equivalent if there exist functions T̂ , X̂ and H of t, x and derivatives
of u such that T̂ and X̂ vanish for all solutions of L and T ′ = T + T̂ + Dx H, X ′ = X + X̂ − Dt H . A conserved
vector is called trivial if it is equivalent to the zeroth vector.

The notion of linear dependence of conserved vectors is introduced in a similar way. Namely, a set of conserved
vectors is linearly dependent if a linear combination of them is a trivial conserved vector.

Although in many simple cases conservation laws can be investigated in the above empiric framework, for deeper
analysis one often needs to consider more rigorous definitions, that can be found, e.g., in [5–7].

Let the system L be totally nondegenerate [8, Sects. 2.6 and 4.3]. (Roughly speaking, it can be understood
that the system admits a Cauchy–Kovalevskaya formulation.) Then application of the Hadamard lemma to (1) and
integrating by parts imply that the left-hand side of any conservation law of L can always be presented up to the
equivalence relation as a linear combination of left-hand sides of independent equations from L with coefficients
λµ being functions of t, x and derivatives of u:
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Dt T + Dx X = λ1L1 + · · · + λl Ll . (2)

Equation (2) and the l-tuple λ = (λ1, . . . , λl) are called the characteristic form and the characteristic of the
conservation law Dt T + Dx X = 0, respectively.

The characteristic λ is trivial if it vanishes for all solutions of L. Since L is nondegenerate, the characteristics
λ and λ̃ satisfy (2) for the same conserved vector (T, X) and, therefore, are called equivalent iff λ − λ̃ is a trivial
characteristic.

Any conservation law (1) of L allows us to deduce the new dependent (potential) variable v by means of the
equations

vx = T, vt = −X. (3)

In the case of single equation L, equations of form (3) combine into a complete potential system since L is a
differential consequence of (3). Such systems often admit a number of nontrivial symmetries and so they are of
great interest. If the transformation of some of the nonlocal variables t, x or u depends explicitly on variable v,
such a symmetry is nonlocal for the initial equation (system) and is called potential symmetry.

3 New potential systems

In [7] a new approach of choosing conservation laws for introducing potentials in order to obtain a larger number of
inequivalent potential systems, has been proposed. More precisely, for constructing potential systems in cases when
the dimension of the space of conservation laws is greater than one, instead of using only basis conservation laws
we propose to use their arbitrary linear combinations being inequivalent with respect to an equivalence group of the
class of systems or symmetry group of the fixed system. It is apparent that the number of such independent linear
combination is not necessarily equal to the dimension of the space of conservation laws, as was always assumed
previously. It is possible also that basis conservation laws can be equivalent with respect to groups of symmetry
or equivalence transformations or vice versa, the number of independent (in this sense) linear combinations of
conservation laws can be greater than the dimension of the space of conservation laws. The second possibility
leads to an unnecessary, often cumbersome, study of equivalent systems, while the third causes a great number of
inequivalent potential systems to be missed. Below we illustrate all these three possibilities and show an example
when such extra potential systems lead to new potential symmetries.

In this sense the most classical is an example of diffusion equations, for which indeed all possible inequivalent
potential systems can be constructed using basis conservation laws only.

Example 1 Consider a class of nonlinear diffusion equations of the form

ut = (A(u)ux )x , A(u) �= const . (4)

The equivalence group G∼
1 of this class consists of the transformations

t̃ = ε1t + ε4, x̃ = ε2x + ε5, ũ = ε3u + ε6, Ã = ε−1
1 ε2

2 A,

where ε1, . . . , ε6 are arbitrary constants, ε1ε2ε3 �= 0.
It is well-known that for arbitrary values of A this equation possesses two linearly independent conservation

laws of the form

Dt (u) + Dx (−Aux ) = 0 and Dt (xu) + Dx

(
−x Aux +

∫
Adu

)
= 0.

Therefore, the most general form of potential system depending on one potential that can be constructed for (4) has
the form
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vx = (c1x + c2)u, vt = c1

(
x Aux −

∫
Adu

)
+ c2 Aux .

Depending on the value of c1 (is it equal to 0 or not), using a translation of x from equivalence group G∼ and a
trivial scaling of the potential variable, one can map this general system to one of the following two inequivalent
systems:

v1
x = u, v1

t = Aux , or

v2
x = xu, v2

t = x Aux −
∫

Adu.

Together with the potential system

v1
x = u, v1

t = Aux , v2
x = xu, v2

t = x Aux −
∫

Adu,

constructed with simultaneous usage of two potentials, they exhaust all possible inequivalent potential systems that
can be constructed from local conservation laws of equations of class (4).

In the second example we have a different situation: the number of inequivalent potential systems is less than
the dimension of the space of conservation laws.

Example 2 Consider a class of nonlinear telegraph equations of the form

x−1utt = (F(u)ux )x + H(u)ux .

It was shown in [9] that it admits a four-dimensional space of first-order conservation laws containing a subspace
spanned by

Dt (ut sin t − u cos t) − Dx

(
sin t

(
x Fux + xu −

∫
Fdu

))
= 0,

Dt (ut cos t + u sin t) − Dx

(
cos t

(
x Fux + xu −

∫
Fdu

))
= 0.

It is easy to see that under the action of equivalence transformations of a time translation there exists only a
single locally inequivalent simplest potential system having the form

vx = ut sin t − u cos t, vt = sin t

(
x Fux + xu −

∫
Fdu

)
.

Finally, we consider the most interesting example of the class of wave equations illustrating the possibility of
constructing extra potential systems, yielding new potential symmetries.

Example 3 Consider the class of wave equations

utt = ( f (u)ux )x . (5)

Its equivalence group G∼
w consists of scaling and translation transformations of t, x and u.

For this equation the following local conservation laws with characteristics of zero order are known (see, e.g.,
[10]):

Dt (ut ) − Dx ( f ux ) = 0, Dt (tut − u) − Dx (t f ux ) = 0,

Dt (xut ) − Dx

(
x f ux −

∫
f du

)
= 0, Dt (x(tut − u)) − Dx

(
t

(
x f ux −

∫
f du

))
= 0.
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Their characteristics are 1, t, x and t x , respectively. Therefore, the most general simplest potential system can be
constructed by using a local conservation law having characteristic c1t x + c2x + c3t + c4, where ci are arbitrary
constants.

If c1 �= 0, then without loss of generality we can assume that c1 = 1. Using equivalence transformations
x → x − c3, t → t − c2 we can reduce this characteristic to form xt + c4. Applying additionally scaling transfor-
mations, we get xt +ε, where ε = 0, 1. Considering similarly the case c1 = 0, we obtain the following inequivalent
(in this sense) characteristics: x +εt, t and 1, where ε = 0, 1. In this way we get the following simplest inequivalent
potential systems:

v1
x = ut , v1

t = f ux , (6)

v2
x = tut − u, v2

t = t f ux , (7)

v3
x = xut + ε(tut − u), v3

t = x f ux −
∫

f du + εt f ux , (8)

v4
x = x(tut − u) + εut , v4

t = t

(
x f ux −

∫
f du

)
+ ε f ux . (9)

A classification of symmetries of the potential systems (6), (7), (8) |ε=0 and (9) |ε=0 is considered in [10], while
the potential systems

vx = xut + tut − u, vt = x f ux −
∫

f du + t f ux , (10)

vx = x(tut − u) + ut , vt = t

(
x f ux −

∫
f du

)
+ f ux , (11)

are new and can lead to new potential symmetries. In particular, system (11) gives potential symmetries for (5) if
and only if f = 1 mod G∼

w . The corresponding potential algebra has the form〈
1

x2 − t2 (t∂t − x∂x ),

(
t + 2x

x2 − t2

)
∂t +

(
x − 2t

x2 − t2

)
∂x ,

−1

4
(3t x2 + 4x + t3)∂t − 1

4
(x3 + 3t3x + 4t)∂x +

(
v + 1

2
(t2 + x2)u

)
∂u

+
(

(1 + 2t x + t2x2)u − 1

2
(t2 + x2)v

)
∂v, µ∂u + φ∂v

〉
,

where µ = µ(t, x) and φ = φ(t, x) satisfy the following system of linear equations

φt = (xt + 1)µx − tµ, φx = (xt + 1)µt − xµ.

Similarly one can prove that Eq. 5 with f = 1 admits potential symmetries associated with potential system (10).

4 Conclusions

The view proposed in [7] on equivalence of conservation laws gives rise to a generalization of the procedure for the
construction of inequivalent potential systems. In this note we have shown how to find an optimal set of inequivalent
potential systems associated with the given system of differential equations.

Previously, for the construction of the simplest potential systems, only basis conservation laws were used. It
was just luck that for the considered cases they exhaust all possible inequivalent potential systems. This happened
because an arbitrary linear combination of their basis conservation laws could be reduced to a subset of the basis
elements by means of a symmetry or equivalence transformation of the considered systems. However, often, then
the situation can be much more complicated. Thus, the basis conservation laws may be equivalent with respect to
groups of symmetry or equivalence transformations, or vice versa, the number of independent linear combinations
of conservation laws may be greater than the dimension of the space of conservation laws. Here we included three
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examples illustrating all these possibilities. In the latter two cases, for the construction of potential systems, instead
of using only basis conservation laws, we propose to use their arbitrary linear combinations being inequivalent with
respect to an equivalence group of the class of systems or symmetry group of the fixed system.

As one can see from the Examples 2 and 3, using a normal way of constructing potential systems instead of
the approach proposed here, can lead to a needlessly cumbersome investigation of equivalent systems with no new
results or may cause a great number of inequivalent potential systems and potential symmetries to be missed.
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